forecast_univariate.RdA function to estimate univariate forecasts out-of-sample. Methods available include all forecast
methods from the forecast package. The function will take in a data frame of the target variable,
and a observation date column (named 'date'), while outputting a data frame with a date column and
one column per forecast method selected.
forecast_univariate( Data, forecast.dates, methods, horizon, recursive = TRUE, rolling.window = NA, freq, outlier.clean = FALSE, outlier.variables = NULL, outlier.bounds = c(0.05, 0.95), outlier.trim = FALSE, outlier.cross_section = FALSE, impute.missing = FALSE, impute.method = "kalman", impute.variables = NULL, impute.verbose = FALSE, parallel.dates = NULL, return.models = FALSE, return.data = FALSE )
| Data | data.frame: data frame of variable to forecast and a date column; may alternatively be a  | 
|---|---|
| forecast.dates | date: dates forecasts are created | 
| methods | string or vector: models to estimate forecasts | 
| horizon | int: number of periods to forecast | 
| recursive | boolean: use sequential one-step-ahead forecast if TRUE, use direct projections if FALSE | 
| rolling.window | int: size of rolling window, NA if expanding window is used | 
| freq | string: time series frequency; day, week, month, quarter, year | 
| outlier.clean | boolean: if TRUE then clean outliers | 
| outlier.variables | string: vector of variables to standardize, default is all but 'date' column | 
| outlier.bounds | double: vector of winsorizing minimum and maximum bounds, c(min percentile, max percentile) | 
| outlier.trim | boolean: if TRUE then replace outliers with NA instead of winsorizing bound | 
| outlier.cross_section | boolean: if TRUE then remove outliers based on cross-section (row-wise) instead of historical data (column-wise) | 
| impute.missing | boolean: if TRUE then impute missing values | 
| impute.method | string: select which method to use from the imputeTS package; 'interpolation', 'kalman', 'locf', 'ma', 'mean', 'random', 'remove','replace', 'seadec', 'seasplit' | 
| impute.variables | string: vector of variables to impute missing values, default is all numeric columns | 
| impute.verbose | boolean: show start-up status of impute.missing.routine | 
| parallel.dates | int: the number of cores available for parallel estimation | 
| return.models | boolean: if TRUE then return list of models estimated each forecast.date | 
| return.data | boolean: if True then return list of information.set for each forecast.date | 
data.frame with a date column and one column per forecast method selected
if (FALSE) { forecast_univariate( Data = data, forecast.dates = date.vector, method = c('naive','auto.arima', 'ets'), horizon = 1, recursive = FALSE, freq = 'month')}