Estimate regime-dependent impulse response functions
rvar_irf( rvar, horizon = 10, CI = c(0.1, 0.9), bootstrap.type = "auto", bootstrap.num = 100, bootstrap.parallel = FALSE, bootstrap.cores = -1 )
rvar | RVAR output |
---|---|
horizon | int: number of periods |
CI | numeric vector: c(lower ci bound, upper ci bound) |
bootstrap.type | string: bootstrapping technique to use ('auto', 'standard', or 'wild'); if auto then wild is used for IV or IV-short, else standard is used |
bootstrap.num | int: number of bootstraps |
bootstrap.parallel | boolean: create IRF draws in parallel |
bootstrap.cores | int: number of cores to use in parallel processing; -1 detects and uses half the available cores |
list of regimes, each with data.frame of columns target
, shock
, horizon
, response.lower
, response
, response.upper
# \donttest{ # simple time series AA = c(1:100) + rnorm(100) BB = c(1:100) + rnorm(100) CC = AA + BB + rnorm(100) date = seq.Date(from = as.Date('2000-01-01'), by = 'month', length.out = 100) Data = data.frame(date = date, AA, BB, CC) Data = dplyr::mutate(Data, reg = dplyr::if_else(AA > median(AA), 1, 0)) # estimate VAR rvar = sovereign::RVAR( data = Data, horizon = 10, freq = 'month', regime.method = 'rf', regime.n = 2, lag.ic = 'BIC', lag.max = 4)#> Warning: NAs introduced by coercion#> Warning: NAs introduced by coercion#> Warning: NAs introduced by coercion#> Warning: NAs introduced by coercion